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Implicit Monte Carlo Diffusion - An Acceleration Method 
for Monte Carlo Time Dependent Radiative Transfer 

Simulations (U) 

N. A. Gentile 
Lawrence Livermore National Laboratory 

abstract 
We present a method for accelerating time dependent Monte Carlo radiative transfer cal- 
culations by using a discretization of the diffusion equation to calculate probabilities that 
are used to advance particles in regions with small mean free path. The method is demon- 
strated on problems with on I and 2 dimensional orthogonal grids. It results in decreases 
in run time of more than an order of magnitude on these problems, while producing an- 
swers with accuracy comparable to pure IMC simulations. We call the method Implicit 
Monte Carlo Diffusion, which we abbreviate IMD. (U) 

Introduction 

The time dependent transport equation for gray photons in the absence of scattering is 
(Pomraning, 1983) 

1 aI - -+h-VI=-a,I+maaT4 
c at 

where c is the speed of light, aa is the macroscopic absorption cross section in inverse 
length units and T is the matter temperature. The transport equation is coupled to the 
material energy balance equation (Pomraning, 1 983) 

Here, Em is the matter energy density in units of energy per volume. These equations can 
be solved by a Monte Carlo method described (Fleck, 1963). The method discetizes the 
problem on a mesh. Each zone has a temperature and absorption and scattering cross 
sections. Particles representing photons are created in the zones at the beginning of each 
time step according to the emission term in the transport equation. Then the photons are 
followed through the zones, heating them according to the absorption term in Eq.(l). The 
zone temperatures are updated at the end of the time step, and the process is repeated. 
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This method becomes unstable when time steps of the order of (FLeck and Cum- 
mings,l971) 

' P c ,  At = ___ 
aT cc~p (3) 

are taken. Here p is the density of the matter, cu is the specific heat capacity in units of 
energy per mass per temperature, and op is the Planck mean opacity in inverse length 
units. This instability occurs when the matter and radiation fields exchange an amount of 
energy comparable to the amount of energy necessary to change the matter temperature 
a non-negligible amount in one time step. If the matter is only able to absorb energy 
during a time step, but is not able to reradiate, as in the algorithm in (Fleck, 1963), then 
instabilities will occur. The inability of the matter to re-radiate the energy it absorbs from 
the radiation during a time step is related to the fact that the temperature in the emission 
term of the transport cequation is calculated using the temperature at the beginning of the 
time step. 

A method providing unconditional stability for the photon transport equation was pro- 
vided by Fleck and Cummings (FLeck and Cummings,l971). The method was dubbed 
Implicit Monte Carlo, usually abbreviated IMC. IMC works by using the matter energy bal- 
ance equation to estimate the future matter temperature, and using this estimate in the 
transport equation. This substitution has the effect of reducing the absorption opacity in 
the transport equation by a factor of 

1 
= 1 + pcatop (4) 

and adding an amount of thermally redistributed isotropic scattering. Here p = aT3/pc;. 
The factor f is small when photons are being absorbed and quickly re-emitted by the 

matter. Problems in which this occurs are said to exhibit tight coupling between the 
radiation and matter. IMC replaces the absorption and rapid reemission occurring in 
tightly coupled problems with isotropic scattering. This scattering is usually referred to as 
the induced scattering, to distinguish it from physical scattering. The induced scattering 

When the scattering, either physical or induced, is large, then the mean free path of 
photons can be much smaller than a typical dimension of the zones in the discretized 
mesh. IMC particles take many steps in these zone. Each simulated photon path in 
an IMC calculation is about equally expensive; thus, simulations with a large scattering 
cross section can be very time consuming to calculate. The end result of applying the 
IMC algorithm is to stabilize the calculation, at the cost of making highly absorbing, tightly 
coupled problems as expensive to run as highly scattering ones. 

When a problem has a large cross section for isotropic scattering, a numerical solution 
of the diffusion equation can provide a more rapid solution technique (Pomraning,l983). 
The diffusion equation describes the time development of the radiation energy density, 
which is the zeroth moment of the intensity I : 

0 s  = (1 - f)oa. 

dE 
- -+ V a F = ca,aT4 - at (5) 
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Where E ,  the radiation energy density , is defined by 

E = IdR I- 
and the flux F ,  the first moment of I is defined by 

October 2000 

To allow us to calculate E from this equation, we must define F in terms of E. This is 
usually done by using Fick's law: 

F =z -cDVE (8) 

where D = 1/(3a) is the diffusion coefficient. 

of the transport equation, and taking the limit as the factor (Larsen,l980) 
The diffusion equation can be derived from the transport equation by taking moments 

5-1 mean free path 
E=-=- 

L characteristic length of the flux 

becomes small. Thus, the solution of the diffusion equation is an accurate approximation 
to the first moment of the solution of the transport equation when the intensity describes 
photons with a nearly isotropic angular distribution which is slowly varying in space and 
time. Thus, the diffusion equation can provide an accurate approximation for highly scat- 
tering problems where IMC is prohibitively expensive. 

Since IMC is expensive where diffusion is accurate, solution techniques have been 
developed that employ iMC in parts of the problem with a small induced scattering and 
some form of diffusion in parts of the problem with a large induced scattering (Pomraning 
and Foglesong, 1979). These are referred to as hybrid methods. 

A hybrid technique involves solving the diffusion equation on parts of the grid and IMC 
on other parts. The IMC simulation provides a flux that is used as a boundary condition 
for the solution of the diffusion equation, which usually requires a matrix inversion. The 
flux of energy out of the diffusion equation is turned into particles used by the IMC in the 
next time step. 

A drawback to this method arises from problems in the coupling of the diffusion equa- 
tion to the transport equation. The boundary condition of the diffusion equation is a net 
flux, while the boundary condition of the transport equation is an incoming flux. Using the 
diffusion equation to get a boundary condition from for the IMC may result in a negative 
energy flow (Le., a negative number of particles) into the IMC, which is a difficulty for 
Monte Carlo calculations. 

Our hybrid scheme avoids this. Using the matrix resulting from discretizing the diffu- 
sion equation in the highly scattering part of the problem, we derive probabilities for the 
Monte Carlo particles to deposit energy, reach census, or jump to another zone. Since 
this method involves a Monte Carlo solution of the diffusion equation, and uses the same 
stabilization technique as IMC, we have dubbed it Implicit Monte Carlo Diffusion, which 
we abbreviate IMD. 
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The IMD particle can jump to a new zone in one step, rather than taking many IMC 
steps. Our method in effect rolls many expensive IMC steps into one very cheap IMD step. 
Thus the calculation proceeds much more rapidly in the diffusion region than it would if 
we employed IMC there. Monte Carlo particles can freely cross the boundary from the 
diffusion region to the IMC region, and so no problems with negative energy flows result. 
Since the IMC particles can be run in the diffusive region, the two regions are coupled 
together implicitly, and no time step restrictions arise. 

In the following sections, we develop the IMD algorithm and show how to make a hybrid 
IMCAMD method. In section 2, we describe the discretization of the diffusion equation. 
In section 3, we show how to solve the matrix equation obtained by this discretization by 
a Monte Carlo method which resembles IMC. In section 4, we describe how to use the 
Monte Carlo diffusion method with IMC in a hybrid method. In section 5, we apply this 
hybrid method to various gray opacity test problems. We show that it can be considerably 
faster than IMC alone on problems with very opaque regions, while yielding a similar 
result. 

Discretizing the Diffusion Equation 

We will begin by considering the diffusion equation in Cartesian coordinates, In a 1 D 
slab geometry, as outlined in Szilard and Pomraning (1992). Our development will rely 
heavily on this derivation. The diffusion equation under these assumptions is (Szilard and 
Pomraning,l992) 

l d E  d 6'E 
cat - dz ba,] = aaaT4 - aaE. 

We will solve this equation by discretizing it as in Szilard and Pomraning (1992). We 
will take E to be a zone centered variable, and use backward Euler time differencing. The 
result is 

Here j is a zone index, and j+(-)1/2 indicates the face in the increasing(decreasing) x 
direction. 

In zones with neighbors, we can get F at the edges by discretizing Fick's law: 

where 

and 
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(As noted in in Szilard and Pomraning (19921, the harmonic average given in Eq.(13) will 
yield a small value for the face diffusion coefficient in cases where either zone has a small 
diffusion coefficient. This can occur in problems with temperature dependent opacities 
that are large in cold matter. A small diffusion coefficient leads to a small flux via Eq.(12); 
thus , the diffusion of heat into cold, opaque material may be unphysically retarded. In 
Szilard and Pomraning (1992), a means of dealing with this problem is outlined: essen- 
tially, the values of D employed in face calculations such as Eq.(13) are calculated using 
a common temperature derived from the temperatures of the neighboring zones. In this 
paper, this issue does not arise, because we have run only simulations with a temperature 
independent opacities.) 

For the two edges at the ends of the problem, we get F from the boundary condition 
given in Szilard and Pomraning (1992) 

(1 5) 
C F =  - [E+2Di i *VE] .  4 

We should note an issue, described in Szilard and Pomraning (1992), that arises in 
the calculation of the diffusion coefficient D. This is the use of a flux limiter to prevent 
superluminal energy transport in regions with a small opacity. Several flux limiters and 
their effects are considered in Olson (2000). 

The source term in Eq.(ll) depends on the current matter temperature q, rather 
than the future matter temperature T;+', which would make the time differencing fully 
implicit. This can effect the quality of the solution, as discussed in Szilard and Pomraning 
(1992). This dependence on the current matter temperature rather than the future matter 
temperature is what led to the time step restriction Eq.(3) in the Monte Carlo solution of 
the transport equation. 

This problem is addressed in Szilard and Pomraning (1 992) by iterating on the matter 
temperature, but that requires multiple matrix inversions per time step. Instead, we choose 
to solve it in the same manner that is employed to stabilize the IMC algorithm. Solving 
the matter temperature equation to get an estimate of the future matter temperature, and 
using that in Eq.(lO) yields 

= faaaT4- faaE 

where f is the same factor, given Eq.(4), that is employed in IMC. As in IMC, this transfor- 
mation results in induced isotropic scattering, which shows up in the diffusion coefficient. 
Since D is defined in terms of the sum of the opacities, it's value remains unchanged. 

This transformed diffusion equation could also have been derived by starting with the 
transport equation as modified by IMC, integrating over angle, and applying Fick's law. 
This derivation would parallel the one in (Larsen,l980) with a factor of f modifying a, 
everywhere and a scattering opacity of (1 - f)o, in the transport equation. 

Substituting in the definitions of the flux in terms of the energy into the discretized 
diffusion equation Eq.(l I ) ,  and decreasing the absorption opacity by the factor f as in 
Eq.(l6), we get 
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(1 7) 

At the x = 0 boundary, we get a similar equation relating E,"+1 and E;+' by differencing 
the flux given in Eq.(15) and inserting the result into Eq.(ll). The result is 

In this equation, Fo is the flux through the boundary at x = 0, which adds energy into the 
source term in zone 1. A similar equation is obtained at the x = xm,, end of the problem. 

and E;?: the 
boundary fluxes is a matrix equation Ax = b, with the ET+' the components of z and the 
source terms the components of b. The matrix A is tridiagonal and can easily be solved by 
standard techniques (Press, et.al., 1992) Below, we will outline a Monte Carlo technique 
for solving it. 

In a manner similar to that applied above, we can get a matrix equation for a zone 
centered discretization of the diffusion equation in cylindrical coordinates in a 2 D axially 
symmetric geometry on an orthogonal mesh. Employing the usual five point differencing 
scheme results in a similar set of equations which has five off -diagonal bands. 

In both the Cartesian 1 D and the orthogonal cylindrical case, the matter energy density 
satisfies the same equation: 

The equations defining E;+' in terms of the neighboring values 

c f a, / IdR - c f o,aT4. (1 9) 
aEm 
at 

-= 

This is the same equation satisfied by the matter energy density in the IMC formulation. 
The change in the matter energy density given by Eq.(l9) is the difference between 

the energy thermally radiated by the matter and the energy absorbed from the radiation 
field, Often this equation is solved by introducing the heat capacity and writing 

aT 
= c f o a / I d Q  - cfo,aT4 

which can be differenced and solved for the temperature if c, is assumed constant. This 
difference equation only conserves energy if C, is actually constant. We prefer to differ- 
ence Eq.(l9) as 

(21 1 E, - - EYI + ~t [ ~ a O ~ ~ b ~ d  j - Cfjoa j n q 4 ]  

where Eabsorbed is the amount of energy absorbed by the matter from the radiation field 
and is obtained from the solution of the diffusion equation. 

Using Eq.(21), E;+; is solved for the new matter energy at tn+l, which can be numeri- 
cally inverted using the equation of state to obtain the new matter temperature P + l .  

6 
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Discretized Diffusion Equation by a Monte Carlo 

The matrix equations arising from the discretizations of the 1 D Cartesian and 2D orthogo- 
nal cylyndrical diffusion equation are similar. In both cases, the diagonal element consists 
of the sum of the following terms: 1, arising from the time derivative term, catfa,, arising 
from the absorption term, and several terms, one for each neighboring zone, involving 
the diffusion coefficient and geometric factors, which arise from the flux term. The off- 
diagonal elements are the negative of these diffusion coefficient terms. Both matrixes are 
diagonally dominant, and symmetric, and hence are symmetric positive definite. 

The source terms are the same in both cases, consisting of the sum of the old energy 
density in the zone E; and a source term depending on the temperature, cat f aaaT4. 

Here, we will derive a Monte Carlo solution technique that is applicable to both the 1 D 
and 20  discretized diffusion equation (and is in fact applicable to any symmetric matrix 
equation in which the diagonal is of the opposite sign as the off diagonal terms.) Our 
derivation will employ the Eq.(l6) above, but the generalization to the 20 case, and other 
matrixes, will be clear. If we take the matrix equation defined by Eq.(l7) and solve it for 
ET+' we obtain the following relation which defines the radiation energy density in zone j 
in terms of the radiation energy density of neighboring zones and the energy of the source 
in zone j :  

(22) E, n+l - - ~3"-+1'.fj-1/2 + ~ ~ ~ ~ l p ^ j + l / 2  + Ermrce  j / d j  

where we have made several definitions: the source energy in zone j ,  E,",,,, = E; + 
cAtfjaa jaT;4; the diagonal term of the matrix, d j ,  which is the coefficient of ET+' in 
Eq.(l7); the off diagonal term f^-tj = /& with f-j defined similarly. We also 
define Etotal = C j  E&,,, j .  The symmetry of the matrix is expressed by the fact that 
f+j = f-j+l and f-j = f+j-l. 

The Monte Carlo solution technique involves some number N of particles associated 
with the zones of the mesh. The particles are created in the zone j with a probability 

j /Eto td ,  carrying energy Epartide = Etotd/N. They jump to zone j + 1 with a prob- 
ability P+j = f +j / d j  and zone j - 1 with a probability P-j E flj/ij. When a particle 
is in zone j ,  we will tally its energy into ET+' with a probability Pcj = l/& We will refer 
to this event as census, because it will be seen to be analogous to the census event in 
the IMC algorithm. A particle in zone j can also tally into another variable Eabsorbed j with 
probability Paj E caaAt/dj = 1 -P-tj  - P - j  -Pcj. &bsm6ed will be seen to be the energy 
absorbed by the matter in zone j .  We follow each particle from zone to zone untit it tallies 
into either ET+' or Eabsorbed in some zone, or leaves the problem through the ends. When 
all the particles tallied, we are through with the time step. 

The probabilities we have defined all evidently satisfy the requirement that they be 
greater than or equal to zero and less than or equal to one, and they all add to one. This 
is because of the nature of the matrix we have defined. In particular, P+j and P-, satisfy 
these inequalities because the off-diagonal terms in the matrix were negative, and also 
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appeared in the diagonal term with positive sign. 

obtained by from this algorithm satisfies Eq.(22). 
We will now show that the expected value of E;+', which we will denote < E?+' >, 

The expected value < E;+' > satisfies 

< E;+' >= Pcj h' tm lirn EpartideNj (23) 

where ?Ij is the number of particles that pass through the zone j .  A particle in zone j 
must either be born in zone j or jump there from another zone. This implies 

where 

-FITborn = NtotalEsowce j / 'Etotal  = Esmrce j/'Eparticie* 

Using these relations, we obtain 

< >= PqP-j+l lim EpartideNj+l+PcjP+. lirn EparticleNj-l+PcjEsozlrce j.(24) 
N+CO J-lN+cQ 

Using the symmetry of the matrix, the terms involving the products of probabilities can be 
rewritten: 

which leads to P Pcj = P - j  Pcj. Similarly, P -j+l Pcj = Pcj+lP+j. 
Using these relations, and the definition of Pcj = l/djl we find that 

< >= P-j lim Pcj + lEpartideNj+l+P+j lim Pcj_lEpartjcleNj-l+Esource j/dj.(26) N-tm h'+m 

Using the definition of the expected value, this becomes 

< E;+' >= P-j < E;:: > +P+j < E;?: > +E,,,, j / d j -  (27) 

The expected values for the energy produced by the algorithm satisfy the difference 
equation Eq.(22) we wish E;+' to satisfy. Thus, we can take the results for E;+' we 
get from the random walk, which are obtained with a finite number of particles, as an 
approximate solution of the equation. Since the q+' represents the photon energy in 
zone j at time n + 1, the tally of a photon into E;+' is analogous to an IMC particle 
reaching census. On the next time step, our values q+' become the E; used in the 
source term. 

A similar calculation will show that Eq.(l8) can be manipulated to give probabilities 
that hold in zone 1, and that these give rise to expectation values that satisfy Eq.(18). 
The probabilities for zone 1 are derived by dividing the equation by the diagonal term, 
just as they are in the case of Eq.(l8). In particular, the value of P-l, the probability 
that the particle leaves the problem though the boundary at 2 = 0, comes from the term 
in the denominator that arises from the boundary term, Eq.(l5). A similar term arises at 
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the z = X m a s  boundaiy. We tally the energy of particles that leave the problem into the 
variable Eescaped. 

The IMD particles collectively carry Etotal, and they deposit energy in a conservative 
way. This implies C, Eabsorbed j = Etotal - C, E;+' - Eesmped.  Eabsmbed ,, the energy that is 
not tallied into census, must therefore be the amount of energy that was absorbed by the 
matter in each zone. This energy is used to solve the matter energy balance Eq.(21), to 
obtain the new matter temperature T'+l. 

The algorithm in the 20  case is exactly the same, accept that there are probabilities of 
jumping to four neighboring zones rather than two. The probabilities of jumping in the 2D 
case are given by dividing the flux by the diagonal term, just as in the 1D case. Pc and 
Pa will be given by thle same expressions as in the 1 D case. 

Applying the Monte Carlo solution technique above to the matrix equations produces 
a very simple, easy to code algorithm with a very physical interpretation, and which re- 
sembles IMC very closely. Our Monte Carlo matrix inversion procedure begins by start- 
ing some number of particles in each zone. The weight of the particles is the value of 
the source term in that zone divided by the number of particles. The source term is 
E; + cAtfjaa E; is the radiation energy at time n, which corresponds to the pho- 
tons in census in an IMC calculation, while cAt fjoa j ~ T ; 4  is the energy radiated from the 
matter in that zone, just as in an IMC calculation. So our particles have weights, inter- 
pretable as the energies that IMC particles generated in the zones would have had. We 
will refer to these particles as IMD particles. 

IMD particles are advanced by drawing a random number and comparing it to the 
probabilities derived ff rom the matrix. The probability of reaching census, Le., contributing 
to E?+', is l/ij. If this event occurs, the particles energy is tallied into the variable holding 
E;+'. The probability of absorption is cAtfjaa j .  If this event occurs, the particle's energy 
is tallied into the variable holding the amount of energy absorbed by the matter in that 
zone from the radiation field. The probability of jumping to a new zone k is f j ,k /d j$  the 
ratio of the fringe term associated with zone k to the diagonal of the current zone j .  If this 
event occurs, the particle is moved to zone k, a new random number is drawn, and the 
particle is advanced again using the probabilities from zone k. 

As a variance reduction technique, we can use a path length estimator for the census 
and absorption events, rather than the last event estimator described above. In the fast 
event estimator, we tally all of the energy of the particle into census or absorption if that is 
the event selected, and stop advancing the particle. In the path length estimator, we tally 
an amount equal to the probability of census and absorption multiplied by the particles 
energy on each step. Then we subtract the tallied energy from the particles energy. In 
this method, the particle continues to move indefinitely with a decreasing energy. To 
prevent wasting computational resources on particles with small weights, the particle is 
terminated when the weight reaches some small fraction of the initial weight. We have 
used .01 of the initiaO energy as the cutoff in the calculations described in section 5. 

IMD, as a Monte Carlo method, produces a solution with statistical noise in it. This 
can impact the solution of discretized diffusion equations with flux limiters. 

As discussed in Szilard and Pomraning (1992) and Olson (2000), flux limiters use 
some approximation of the slope of the energy to modify the value of diffusion coefficient 
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D when l V E [ / E  is comparable to CT. This occurs when CT is small or when the radiation 
energy is changing rapidly, which is when the diffusion approximation is not applicable. 
Flux limiters are essentially a way to employ diffusion in regions where a full transport 
solution would be more appropriate. 

The value D is assigned when a flux limiter modifies it depends non-linearly on V E .  
This non-linearity would prevent formulating the discretized diffusion equation as a matrix 
equation, so tn values for E are often used. Iteration is also sometimes employed. 

When IMD is used to invert the matrix, the statistical noise in the values obtained for 
E will make the calculation of V E  used in the flux limiter inaccurate. This makes the IMD 
algorithm a poor one for solving flux-limited diffusion equations, although one might be 
able to use it if some kind of smoothing was imposed on the values used to calculate V E .  
IMD is useful when coupled to IMC in a hybrid method. Then IMC can be used where the 
transport equation is more appropriate (Le., where a flux limiter would be needed), and 
IMD can be used where the diffusion approximation is accurate. 

In the calculations described in this paper, we have employed the diffusion approxima- 
tion only in regions with B so large that a flux limiter would not be expected to modify the 
value of D. Experimentation confirmed that the flux limiter given above did not modify the 
value of D obtained from D = 1/(3a). The hybrid results presented in section 5 were not 
run with a flux limiter in IMD. 

Advancing the IMD particles is very similar to advancing IMC particles. They both 
deposit energy in the matter, and reach census. Their tracking behavior is much simpler, 
however. IMD particues do not have a position in the zone, a time, or a direction. They 
are associated with the whole zone, which is because the diffusion equation results from 
an integration over angles, and the discretization that produced the matrix employed zone 
and time average quantities. 

in a zone with a large real scattering opacity, or a zone in which the induced scattering 
is large, an IMC particle will perform many scatters. Each scatter is relatively expensive, 
requiring, among other things, a calculation of the distance from the IMC particte’s current 
location to the zone boundary, the computation of a natural logarithm to determine the 
distance to a scatter, and several if tests to determine the particles fate. Advancing an IMD 
particle is much cheaper, because this distance to boundary calculation is not needed, 
and because the particle always leaves the zone during a step. In effect, many expensive 
IMC steps can be replaced by one inexpensive IMD step, at the cost of replacing the 
solution of the transport equation with the solution of the diffusion equation. I f  the problem 
is highly scattering, or some regions of it are, we may be willing to make this tradeoff, since 
the increase in speed my be quite large, while the decrease in accuracy may be tolerable. 
In the next section, we will describe the IMCAMD hybrid method. In the section following 
that, we will demonstrate the IMCAMD hybrid method on two test problems and examine 
the tradeoff. 

10 
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An IMCIIMD hybrid method 

Hybrid algorithms, with IMC and diffusion running in the same problem, have been de- 
scribed in the literature (Pomraning and Foglesong, 1979). in these hybrid algorithms, 
part of the problem is run with IMC, and the highly scattering part, which would be pro- 
hibitively expensive to run with IMC, is run with diffusion. Dividing the problem up in 
this way means selecting the zones in which diffusion is an appropriate approximation, 
and forming a matrix equation on each contiguous set of these zones. IMC particles are 
advanced through the zones not selected as diffusion zones. 

The similarity of QMD with IMC makes it easy to mate the two. The problem is di- 
vided into IMD and IMC regions by identifying zones where the diffusion approximation 
is acceptable. Since IMC particles are simulating the transport equation, which is accu- 
rate even in the diffusive region, we can allow IMC particles to penetrate freely into the 
these regions. The 1MC region does not provide a flux for the diffusion calculation, so no 
problems involving negative probabilities of reflection result, as arose in (Pomraning and 
Foglesong, 1979). Since there is no flux into the diffusion region at its boundary, a vac- 
uum boundary condition is imposed there. In the IMC regions, IMC particles are radiated 
from the matter in the zones at the start of the time step. In the IMD regions, IMD particles 
are radiated. As IMC particles which penetrate the IMD heat the matter there, it radiates 
IMD particles in subsequent time steps. 

When an IMD particle jumps from a zone in the diffusive region into a zone in the IMC 
region, it is converted into an IMC particle at the boundary between the zones. The IMC 
particle thus has an energy equal to that of the IMD particle. A location on the interface 
between the zones is calculated stochastically, as it would be for a source particle cre- 
ated on that interface by, for example, a temperature source. Similarly, direction cosines 
are generated from the cosine distribution, and a time between tn and tn+l is randomly 
assigned to the particle. 

Although the IMC particles will contribute to an accurate solution of the transport equa- 
tion in regions of high scattering, they are still expensive to track in these regions. We 
might wish to convert 1MC particles to IMD particles to reduce the cost of the calculation. 
However, they might scatter out after a few steps, and the repeated conversion of IMC to 
IMD particles and back is expensive. We have found that converting IMC particles in IMD 
regions to IMD particles after they take 50 IMC steps produces good results with a useful 
reduction in the runtime. 

IMC particles can travel through all zones of the problem within a radius of ca t  from 
their point of origin. IMD particles can, by converting into IMC particles, also travel 
throughout the problem. Thus, all zones that are causally connected can exchange par- 
ticles, even if they are in diffusive regions separated by IMC regions. The regions are 
coupled together implicitly, and there are no stability time step restrictions, only accuracy 
restrictions. 
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Numerical Results 

We will demonstrate at the IMCAMD hybrid method produces a result essentially identical 
to the result of a standard matrix inversion method, differing only in that it has, like all 
Monte Carlo methods, some statistical noise. We will then demonstrate coupled IMC and 
IMD method on two problems which possess both opaque and non-opaque regions, for 
which diffusion alone would be expected to produce an inaccurate answer, and for which 
IMC alone requires a prohibitively large amount of computational resources. 

The first problem is the test problem from (Szilard and Pomraning, 1992). We will 
compare the output (of a pure IMD calculation to the results of a simulation using the 
difference equations given in this reference and solved with a tridiagonal solver in the 
standard way. In this test problem, a temperature source at T',,,, = fi at one end of the 
problem generates a radiation wave which penetrates into an initially cold slab. 

The temperature source forms a Marshak wave which proceeds into the material. 
Figure 1 shows the radiation temperature at 3 different times during the calculation as 
calculated with IMD and with the method given in (Szilard and Pomraning, 1992). Figure 
2 shows the matter temperature. These figures plot the same variables as Figures 1 and 
2 in (Szilard and Pomraning, 1992). 

Both methods produce almost identical results. In this calculation, IMD was run with 
10000 particles. The IMD calculation took considerably longer than the calculation done 
with the traditional finite difference method. (Both calculations took one minute or less on 
a 533 MHz. DEC alpha machine.) This is not surprising, as the tridiagonal matrix that the 
difference method in (Szilard and Pomraning, 1992) uses may rapidly be inverted. Monte 
Carlo matrix inversions are usually much slower than traditional methods of inverting a 
matrix (Palmer and Eccleston, 1999). We are interested in the speedup we can attain 
over IMC calculations on problems for which diffusion cannot be employed everywhere. 
We will now examine two such problems, comparing pure 1MC to the IMC/lMD hybrid 
method. 

The first hybrid problem is a 1 D Cartesian problem in which a region with a, = .1 abuts 
a region with a, = 100. The low opacity region extends from x = 5 to x = 10 and is headed 
by a temperature source at 2 = 10 with a constant temperature of T,,,., = 10. The high 
opacity region extends from 5 = 0 to 3c = 5.  A vacuum boundary condition is imposed at 
x = 0. The initial temperature in both materials was Tinitial = and the heat capacity 
was 48T3. The units were chosen such that c = a = k = 1. 

In the high opacity region, the scattering fraction = 1 - f = .988 (independent of 
temperature), so IMC particles in that region have a very small scattering mean free path. 
We would expect that IMC would be very expensive in the high opacity region and that 
diffusion would be inaccurate in the low opacity region. 

The problem has an approximate steady state solution. In the steady state, E, = E = 
T4. The temperature in the low opacity region will approach TsWrce = 1. In the low opac- 
ity region, the radiation and the matter will reach equilibrium. The matter and radiation 
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energy densities will be equal and satisfy the time independent diffusion equation 

d aE 
-aS [ D Z ]  = O  

on 0 < x < 5, with E = 1 at 1~ = 5 and D = 1/300. A vacuum boundary condition is 
imposed at z = 0: 

This has the solution: 
x + 2 D  
5 f 2 D  

E ( z )  = ~ 

for0 < z < 5 
The problem was run with 110 zones, with zoning of Ax = 1 for 0 < z < 4 and 

5 < z < 10. In 4 < z < 5 there were 20 zones with geometrically decreasing size, with 
the largest zone spaning the region z = 4 to x = 4.0928033856. At = 10, and the problem 
was run to t = 50000. This was considered to be steady state by comparison with the 
solution at t = 100000, which was essentially the same as the one at t = 50000. The IMC 
calculation was run with 5000 particles per time step. In the hybrid simulation, the sum of 
the number of IMC and IMD particles was 5000 in each time step. These were apportioned 
between IMC and the IMD in the same ratio as the sum of source and census energy of 
the IMC and IMD particles. 

Figure 3 shows matter temperature for simulations run with pure IMC, and one with 
a hybrid method with IMC particles run everywhere, and IMD particles run in the high 
opacity region 0 < z < 5. Both methods show good agreement with the approximate 
analytic answer, which is also shown. 

The pure IMC calculation took 21642 seconds, and the hybrid method took 504 sec- 
onds, giving a speedup of approximately a factor of 43. Both calculations were run on 533 
MHz DEC alpha chip, 

Figure 4 shows a plot of the number of particle steps taken by both methods. The pure 
IMC method takes most of its steps in the high opacity region, which spans zones 1 to 
60. In the hybrid calculation, many fewer IMC steps were taken in the high opacity region. 
Since each IMC step takes about the same amount of computer time, and the IMC steps 
are more expensive than the IMD steps, the time of each simulation is approximately 
proportional to the area under the curve representing the number of IMC steps taken. 
Thus the speedup of greater than 40 times is understandable as a result of the fact that 
so many fewer IMC steps were taken in the high opacity material. 

The second problem is a 20 problem developed by Frank Graziani and often referred 
to as the tophat problem (Graziani, 2000). In this problem a cylindrical section of material 
with mass density p = 0.01 g/cm3 and a, = 0.2 cm-l is embedded in thick material with 
p = 10 g/crn3 and a, = 2000 cm-'. The heat capacity c, = 1015 erg/g - keV for both 
materials. A temperature source with T,,,,, = 0.5 kcV is applied at one end of the thin 
material. Vacuum boundary conditions are applied at all other boundaries. The initial 
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temperature Tinitrd = 0.05keV everywhere. Time units are such that c = 300. The time 
step begins at 6t = and is increased by a factor of 1.1 each time step until it reaches 
1 .O, and is held constant at 1 .O thereafter. 

This problem cannot be run accurately with diffusion alone because diffusion cannot 
accurately model the flow of radiation around the corners. There is no analytic answer 
for the problem; the usual figures of merit are the matter temperature at five points in the 
optically thin material (consult Graziani (2000) for details.) 

As time proceeds in this problem, radiation travels down the thin material and around 
the section of thick material in the middle of the problem, and the thick material slowly 
heats up. It is in the heated parts of the thick regions that IMC will be most computational 
intensive. Therefore, we expect that the ratio of the run time of the hybrid calculation to 
the run time of the pure IMC calculation to diminish as the problem is run farther in time. 

This expected result does occur. A problem time of 10, the hybrid calculation took 
5483 seconds, while the pure IMC calculation took 34400 seconds, giving a speedup of 
6.3. At t = 100, the hybrid calculation took 24203 seconds, and the Pure IMC took 573428 
seconds, giving a speedup of 23.7. All simulations were run on a 533 MHz DEC alpha. 

In Figure 5 we have plotted matter temperature at the five fiducial points from the 
hybrid simulation and the pure IMC calculation, as well as an Sn solution (Nowak and 
Nemanic, 1999) Both Monte Carlo calculations had 500,000 total particles per time step. 
We see good agreement between all three simulations for all the points at most times. 
Not all points for the hybrid one are shown. 

The only notable area of disagreement in this plot is in the behavior of the point farthest 
from the heat source. In the Sn simulation there is a small decrease in the temperature at 
this point before the radiation wave begins to heat it. This does not occur in either Monte 
Carlo simulation. This disagreement occurred because the IMC and hybrid calculations 
were run with a variance reduction technique; particles were not allocated to zones that 
were still at the initial temperature. The zone farthest from the heat source, which is near 
the end of the problem, could actually cool off slightly before the radiation wave reached 
it. The Sn calculation captured this transient, while the Monte Carlo calculations did not, 
although they could have if that zone had been allowed to radiate. As soon as the radiation 
reaches that zone, the effect of the cooling is quickly rendered unnoticeable, and all three 
simulations show good agreement for this point thereafter. 

Figure 6 shows a contour plot of the matter temperature in the problem at t = 10. The 
top half shows the hybrid calculation, while the bottom shows the reflected results of the 
pure IMC calculation. (Note that these are two separate calculations, whose results have 
been placed on the same plot by mapping the pure IMC results to "negative" radius.) At 
this time, the lowest temperature contour of the hybrid calculation slightly lags the pure 
IMC calculation, but the agreement is otherwise good. The contour lines were manually 
selected at values between 0.5 and 0.05 so that interesting features in the flow would be 
highlighted (Le., flow around corners.) 

Figure 7 shows a similar contour plot at t = 100. The hybrid calculation shows a 
slightly greater heating in the thick material, but the agreement in the thin material is very 
good, and the overall accuracy seems adequate. 

We believe the excess heating in the thick material to result from the fact that the 
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diffusion approximation is not accurate in the cold, thick material, because the scattering 
opacity is small while the material is cold. The factor f given by Eq.(4) is approximately 1 
until the material heats up. A more accurate way of using the hybrid algorithm would be 
to use IMD only in zones with small f, rather than in zones with a large opacity. 

Summary 

We have developed a method for increasing the speed of certain IMC radiation transport 
calculations, which contain regions where the opacity is large. This method employs a 
Monte Carlo method of matrix inversion to solve the diffusion equation. We have dubbed 
the method Implicit Monte Carlo diffusion, which we abbreviate IMD. The IMD method em- 
ploys particles which resemble the particles used in the IMC radiation transport method. 
Because of this resemblance, the two methods can easily be combined into a hybrid 
method, where IMD is used in optically thick parts of the problem, where the diffusion ap- 
proximation provides an accurate approximation to the results of the transport equation. 
Since the IMD method is considerably faster than the IMC method in these regions, the 
hybrid method can run much faster than IMC alone on some problems. We have demon- 
strated this method on 1 D Cartesian and 20  cylindrical orthogonal mesh calculations. 
Test problems on these meshes show that the hybrid method is accurate and can provide 
speed ups of greater than an order of magnitude. Future work will include extending the 
method to 3D unstructured grids, and to problems with frequency dependent opacities. 
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Figure 1 : T, vs. 5 for t = 0.1, 1 .O, and 10. Line: IMD. Dotted: Finite Difference. 

16 

U NCLASSI FI ED 



NECDC U N C LASS1 FI ED October 2000 

4- 

z -  

E -  

4- 

2 -  

E -  
6 -  

4- 

0.01 

I I I I I I I  I I 1 I I I l l  

0.0 1 0.1 1 10 

X 

Figure 2: T vs. IC for t = 0.1 I 1 .O, and 10. Line: IMD. Dotted: Finite Difference. 
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Figure 3: T vs. z at t = 50000 for 1D Cartesian test problem. Circles: analytic result. 
Dotted: IMC. Line: IMCAMD hybrid. 
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Figure 4: Number of particle paths vs. zone number for ID  Cartesian test problem. 
Dotted: IMC. Line IMC in hybrid, IMD in hybrid. 
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Figure 5: T vs. t for tophat problem. tines:IMC. Circles: IMCAMD hybrid. Dotted: Sn 
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Figure 6: T at t = 10 for tophat problem. Top: IMC/IMD hybrid. Bottom: IMC. 
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Figure 7: T at t = 100 for tophat problem. Top: IMC/IMD hybrid. Bottom: IMC only. 
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